Tabular feature engineering tricks

Some useful tricks when doing feature engineering on tabular dataset
tabular
feature-engineering
Published

June 7, 2020

One of the most important challenge when working with tabular dataset before feeding into the machine learning model is preprocessing data because the quality of data and the useful information that can be derived from it directly affects the ability of model to learn. In the real world application, the raw dataset is kind of messy which needs some skills to clean it.

This blog will cover some tricks that I found quite useful when dealing with messy data.

Pandas tricks

Most of the time when doing tabular dataset we will usually import data into dataframe of pandas. Knowing how to deal with pandas will save us a lot of time of computation with better code readability and versatility.

Pandas Profile for data exploration

Pandas profiling is an open source Python module with which we can quickly do an exploratory data analysis with just a few lines of code.

from pandas_profiling import ProfileReport

profile = ProfileReport(dataframe)

Configure Options & Settings

We usually have to work with a dataframe containing many columns which will collape when reading it. If we want to read all columns of dataframe, we can configure its options at interpreter startup.

pd.options.display.max_columns = 500

#or 

pd.set_option('display.max_columns', 500)

Split a column into multiple columns

Some dataframe columns contain concatenation of data which should be splitted into multiple columns

df = pd.DataFrame({'Name_Age': ['Smith_32', 'Nadal', 
                           'Federer_36']})
df
Name_Age
0 Smith_32
1 Nadal
2 Federer_36
df['Name_Age'].str.split('_', expand=True)
0 1
0 Smith 32
1 Nadal None
2 Federer 36

If we want to take only first column of our splits:

df['Name_Age'].str.split('_').str[1]
0     32
1    NaN
2     36
Name: Name_Age, dtype: object

Extract dummy variables from string columns

df = pd.Series(['Sector 1;Sector 2', 'Sector 1;Sector 3', np.nan, 'Sector 2;Sector 4'], dtype=str)
df
0    Sector 1;Sector 2
1    Sector 1;Sector 3
2                  NaN
3    Sector 2;Sector 4
dtype: object
df.str.get_dummies(';')
Sector 1 Sector 2 Sector 3 Sector 4
0 1 1 0 0
1 1 0 1 0
2 0 0 0 0
3 0 1 0 1

Regular expression with text

df = pd.DataFrame({'Location' : [
    'Washington, D.C. 20003',
    'Brooklyn, NY 11211-1755',
    'Omaha, NE 68154',
    'Pittsburgh, PA 15211'
    ]})
df
Location
0 Washington, D.C. 20003
1 Brooklyn, NY 11211-1755
2 Omaha, NE 68154
3 Pittsburgh, PA 15211

If we want to separate out the three city/state/ZIP components neatly into DataFrame fields, we should pass regex extraction into .str.extract:

regex = (r'(?P<city>[A-Za-z ]+), '      # One or more letters
         r'(?P<state>[A-Z]{2}) '        # 2 capital letters
         r'(?P<zip>\d{5}(?:-\d{4})?)')  # Optional 4-digit extension
df['Location'].str.replace('.', '').str.extract(regex)
city state zip
0 Washington DC 20003
1 Brooklyn NY 11211-1755
2 Omaha NE 68154
3 Pittsburgh PA 15211

Note: .str is called accessor for string (object) data. It maps to the class StringMethods which contains a lot of methods like cat, split, rsplit, replace, extract

Enhance performance with Cython

We usually use the lambda function to apply for each row in dataframe. Sometimes, it is not efficient in term of computation time. Actually we can boost the performance by using Cython extention.

df = pd.DataFrame({'a': np.random.randn(1000),
                   'b': np.random.randn(1000),
                   'N': np.random.randint(100, 1000, (1000)),
                   'x': 'x'})
def f(x):
    return x * (x - 1)
def integrate_f(a, b, N):
    s = 0
    dx = (b - a) / N
    for i in range(N):
        s += f(a + i * dx)
    return s * dx
%timeit df.apply(lambda x: integrate_f(x['a'], x['b'], x['N']), axis=1)
167 ms ± 1.58 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)

Now we will pass the lambda function into Cython extension.

%load_ext Cython
The Cython extension is already loaded. To reload it, use:
  %reload_ext Cython
%%cython
def f(x):
    return x * (x - 1)
def integrate_f(a, b, N):
    s = 0
    dx = (b - a) / N
    for i in range(N):
        s += f(a + i * dx)
    return s * dx
%timeit df.apply(lambda x: integrate_f(x['a'], x['b'], x['N']), axis=1)
120 ms ± 777 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)

By simply putting cython extension before the lambda function, we reduce a significant amount of computation time

Groupby

Groupby is one of the powerful methods which allows us to split the data into groups based on some criteria, compute statistic aggregation on each group or do transformation like standalizing the data within a group and many more.

data = {'Team': ['Riders', 'Riders', 'Devils', 'Devils', 'Kings',
   'kings', 'Kings', 'Kings', 'Riders', 'Royals', 'Royals', 'Riders'],
   'Rank': [1, 2, 2, 3, 3,4 ,1 ,1,2 , 4,1,2],
   'Year': [2014,2015,2014,2015,2014,2015,2016,2017,2016,2014,2015,2017],
   'Points':[876,789,863,673,741,812,756,788,694,701,804,690]}

df = pd.DataFrame(data)
df
Team Rank Year Points
0 Riders 1 2014 876
1 Riders 2 2015 789
2 Devils 2 2014 863
3 Devils 3 2015 673
4 Kings 3 2014 741
5 kings 4 2015 812
6 Kings 1 2016 756
7 Kings 1 2017 788
8 Riders 2 2016 694
9 Royals 4 2014 701
10 Royals 1 2015 804
11 Riders 2 2017 690
df.groupby('Year')['Points'].agg(['mean', 'sum', 'min', 'max', 'std', 'var', 'count'])
mean sum min max std var count
Year
2014 795.25 3181 701 876 87.439026 7645.583333 4
2015 769.50 3078 673 812 65.035888 4229.666667 4
2016 725.00 1450 694 756 43.840620 1922.000000 2
2017 739.00 1478 690 788 69.296465 4802.000000 2

We can also aggregate using the numpy function like np.size, np.mean, np.max

df.groupby('Team').agg(np.size)
Rank Year Points
Team
Devils 2 2 2
Kings 3 3 3
Riders 4 4 4
Royals 2 2 2
kings 1 1 1
df.groupby('Team').transform(lambda x: (x - x.mean()) / x.std()*10)
Rank Year Points
0 -15.000000 -11.618950 12.843272
1 5.000000 -3.872983 3.020286
2 -7.071068 -7.071068 7.071068
3 7.071068 7.071068 -7.071068
4 11.547005 -10.910895 -8.608621
5 NaN NaN NaN
6 -5.773503 2.182179 -2.360428
7 -5.773503 8.728716 10.969049
8 5.000000 3.872983 -7.705963
9 7.071068 -7.071068 -7.071068
10 -7.071068 7.071068 7.071068
11 5.000000 11.618950 -8.157595
df.groupby('Team').filter(lambda x: len(x) >= 3)
Team Rank Year Points
0 Riders 1 2014 876
1 Riders 2 2015 789
4 Kings 3 2014 741
6 Kings 1 2016 756
7 Kings 1 2017 788
8 Riders 2 2016 694
11 Riders 2 2017 690

Sklearn pipeline

One of the most beautiful things I love about sklearn is its creation of pipeline. I found it very neat to use, easily for understanding and particularly very helpful for production.

>Note: Definition of **pipeline** class according to scikit-learn:
Sequentially apply a list of transforms and a final estimator. Intermediate steps of pipeline must implement fit and transform methods and the final estimator only needs to implement fit. 
pipeline = Pipeline([('preprocessing', ColumnTransformer(
                                        transformers = [
                                            ('text', Pipeline([
                                                ('tfidf', TfidfVectorizer(stop_words=['nan'])),
                                            ]), TEXT_COLUMNS),
                                            ('cat', 
                                             FeatureUnion([
                                                    ('ordinal', OrdinalEncoder()),
                                                    ('target_encoder', TargetEncoder())
                                            ]), CAT_COLUMNS),
                                            ('num', TruncatedSVD(n_components=100) , 
                                            NUM_COLUMNS)
                                                    ],
                                            remainder='drop')
                     ),
                     ('model', LGBMClassifier()
                     )
                    ])

pipeline.fit(Xtrain, y_train)

Looking at the pipeline allows to understand right away what we want to do with our data. The example above can be interpreted as the schema below:

image.png

We can also pass the whole pipeline into other pipeline like RandomizedSearchCV or GridSearchCV

params_grid = {
    'model__colsample_bytree': [0.3, 0.5, 0.7, 0.9],
    'model__n_estimators' : [2000, 5000, 8000],
    'model__learning_rate': [0.01, 0.02, 0.05, 0.1, 0.2],
    'model__max_depth' : [3, 5, 7],
    'preprocessing__num__n_components' : [100, 50, 70],
    'preprocessing__text__select__estimator__C' : [1e-2, 1e-1, 1],
    'preprocessing__text__select__max_features' : [10, 20, 50, None],
    'preprocessing__text__tfidf__binary' : [False, True],
    'preprocessing__text__tfidf__ngram_range' : [(1, 1), (1, 2)],
    'preprocessing__text__tfidf__max_df': [0.2, 0.4, 0.6],
    'preprocessing__text__tfidf__min_df': [20, 50]
}
search = RandomizedSearchCV(estimator=pipeline,
                            param_distributions=params_grid,
                            n_iter=100,
                            n_jobs=1,
                            cv = 5,
                            verbose=5,
                            scoring='roc_auc')

search.fit(Xtrain, y_train)

Reference

  1. https://pandas.pydata.org/pandas-docs/stable/user_guide/
  2. https://realpython.com/pandas-groupby/